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Abstract. Adaptation is what allows a system to maintain consistent
behavior across variations in operating environments. In some previ-
ous work, a symbolic representation of the variations between two or
more elements of a set was proposed. This article goes one step further
and defines co-variations as functional dependencies between variations.
This gives us a natural deduction rule on variations, which we show can
be easily extended to perform similarity-based reasoning. A method is
also proposed to learn co-variations from the data. In this method, co-
variations correspond to object implication rules in a pattern structure.
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1 Introduction

Adaptation is what “ allows a system to maintain consistent behavior across vari-
ations in operating environments ”[9]. A variation represents a set of differences
between two or more states of affairs. These differences can be “all or nothing”,
i.e., express the gain, preservation, or loss of a property, (e.g., “false morels are
toxic whereas true morels are edible”), or express a change of degree (e.g., “the
movie Mad Max is more violent than the movie Cinderella”). In some previous
work [3], we proposed to represent variations as an attribute of an ordered set
of objects (at least two), all taken in a same set. The question addressed here
is the formalization of the co-occurrences that may exist between two or more
variations, and the definition of “rules of inference” that could be used to infer a
variation from another. In particular, we would like to define a “modus ponens”
inference rule, which may be summarized schematically (for pairs of objects) as
follows:

fpz, tq
IF fpx, yq THEN gpx, yq

gpz, tq

Such deductive reasoning enables to determine the value of a variation from
another by applying a “IF . . . THEN” rule. This rule must express the fact that
the variation g cöıncides locally with the variation f on a set of pairs of objects
that contains the pair pz, tq.



In this article, we propose to define co-variations as functional dependencies
between variations. This definition enables to define a natural deduction rule on
variations, which can be easily extended to define a similarity-based reasoning.
A method is proposed to learn co-variations from data. In this method, the
co-variations correspond to object implication rules in a pattern structure.

The paper is organized as follows. The next section reviews the literature.
Sec. 3 recalls some definitions about variations. In Sec. 4, a co-variation is defined
as a functional dependency on variations. A natural deduction scheme is defined
in Sec. 5, and extended in Sec. 6 to a similarity-based inference. Sec. 7 presents a
method to learn co-variations from data. Sec. 8 concludes and gives future work.

2 Review of Literature

One motivation of this work is the role variations play in the adaptation step in
case-based reasoning. In one of its formulations [10], adaptation is presented as
the construction of a solution solptgtq of a target problem tgt by modifying
the solution solpsrceq of a retrieved source problem srce. Adaptation can be
decomposed in three steps:

¬ psrce, tgtq ÞÑ ∆pb : the differences between the two problems srce and tgt

are represented;
 p∆pb, AKq ÞÑ ∆sol : some adaptation knowledge AK is used to construct a

variation ∆sol between solpsrceq and the (future) solptgtq ;
® p∆sol, solpsrceqq ÞÑ solptgtq : solpsrceq is modified into solptgtq by

applying ∆sol.

According to this model, performing adaptation requires to be able to infer vari-
ations ∆sol between solutions from variations ∆pb between problems (step ).

This paper proposes a symbolic representation of co-variations, and as such
can be contrasted with the statistical or graphical approaches often used for cor-
relation detection (see for example [8, 16, 19]). A co-variation expresses a local
cöıncidence of values of two properties, each of which apply to an ordered set of
objects. The notion of co-variation is therefore close to the notion of analogical
dissimilarity, which is measured in [7] by counting the number of flips necessary
to turn four objects into an analogical proportion, and in [11] by taking the
cosine of two vectors in the euclidian space Rn. When variations represent a
change in degree of a property, co-variations express monotone correspondences
between gradual changes, through rules of the form “the more x is A, the more y
is B”. Such correspondences are known in language semantics as argumentative
topöı, and are defined as pairs of gradual predicates, along with the set of mono-
tone correspondences between these gradations [2]. Gradual inference rules [5,
14] may be seen as a numerical modeling of such correspondences using fuzzy
logic techniques. These rules have been applied to similarity-based reasoning [13],
and even to the modeling of adaptation [6]. However, their semantics is differ-
ent from the one presented here. A gradual inference rule models uncertainty,
whereas the semantics chosen here for co-variations rather models co-occurrence,



in the spirit of association rules. Regarding co-variation learning, an algorithm is
proposed in [20] to extract gradual inference rules using inductive logic program-
ming techniques. A method is proposed in [17] to learn analogical proportions
from formal contexts by reducing iteratively the analogical dissimilarity between
pairs of objects.

3 Variations

This section recalls some definitions about variations.
A variation is modelled by a function f : Xn ÝÑ V which associates a value

taken in a set V to the elements of the cartesian product Xn. In the following,
we’ll assume that n � 2, so that variations are attributes of pairs of elements of
X . The set of all variations f : X 2 ÝÑ V defined on a set X 2 and with values in
V is denoted by V pX 2,Vq.

Variations and Binary Relations. When V � t0, 1u, the set V pX 2, t0, 1uq denotes
the indicator functions of binary relations on X 2. For example, if X � N is the
set of natural numbers, one can define the variation:

1¨px, yq �

#
1 if x ¨ y

0 otherwise

that returns 1 if x is lower or equal than y and 0 otherwise.

Variations between Sets of Binary Attributes. A special case is when X � PpMq
denotes the powerset of a set M of binary attributes. For example, let
M � ta, b, c, d, eu denote a set of binary attributes, and x � ta, b, du and
y � ta, eu be two sets of attributes of M. A natural way to represent the varia-
tions between x and y is to introduce the four sets xX y, xX y, xX y, and xX y,
which together form a partition of M. In our example, we get:

xX y � tau xX y � tb, du xX y � teu xX y � tcu

When x, y, z, and t represent sets of binary attributes, the analogical proportion
x :y :: z : t is defined [18] by xX y � z X t and xX y � z X t, which means that
the analogical proportion x : y :: z : t holds for two pairs (x,y) and (z,t) if and
only if the two pairs take the same value for the variation:

υpx, yq � txX y , xX y u

If the three sets x, y, and z are known, solving
the analogical proportion equation enables to
determine the set t. For example, if x � ta, b, du,
y � ta, eu, and z � ta, b, cu, then υpx, yq �
ttb, du, teuu and all sets of attributes t that ve-
rify υpz, tq � υpx, yq are in analogical proportion
with x, y, and z. Unfortunately, in this example,
the equation has no solution (Fig. 1) since z does
not contain the attribute d.

a b c d e

x 1 1 0 1 0
y 1 0 0 0 1
z 1 1 1 0 0

t 1 0 1 ? 1

Fig. 1: Resolution of the equa-
tion x :y :: z : t � 1.



4 Co-Variations

In this section, co-variations are defined as functional dependencies between two
(sets of) variations. Let us first define the notion of co-variation between two
single variations.

Definition 1. Let f, g P V pX 2,Vq be two variations. A variation g co-varies

with a variation f on a subset R of X 2, denoted by f
R
ñ g, iff for all px, yq and

pz, tq of R:

fpx, yq � fpz, tq ñ gpx, yq � gpz, tq

This definition expresses the fact that whenever two elements of the subset R
of X 2 share a same value for the variation f , they must also share a same value

for g. If R � X 2, the set R can be omited, and we will write f ñ g for f
X 2

ñ g.
This definition can be extended to the co-variation between two sets of vari-

ations.

Definition 2. Let F � V pX 2,Vq and G � V pX 2,Vq be two sets of variations.

The set G co-varies with the set F on a subset R of X 2, denoted by F
R
ñ G, iff

for all px, yq and pz, tq of R :

@f P F, fpx, yq � fpz, tq ñ @g P G, gpx, yq � gpz, tq

This definition expresses the fact that each subset of R that shares the same
value for all variations of F must also share a same value for all variations of G.

Similarly, we will write F ñ G for F
X 2

ñ G.

Co-Variations and Analogical Proportions. Let us assume that X � PpMq de-
notes the powerset of a set M of binary attributes. Let us consider the variations
υT defined for T � M by: υTpx, yq � txX yX T , xX yX Tu. The variations υT rep-
resent the differences that exist between two sets of attributes, but on a subset
T � M only. They take the same value for all pairs px, yq that are in analogical

proportion on the subset T. One can write the co-variations υS
R
ñ υT. These co-

variations express the fact that every subset of R that is in analogical proportion
on S (i.e., for which the variation υS takes the same value) is also in analogical
proportion on T. More formally:

Definition 3. Let R � X 2 and T � M. The set R is in analogical proportion on
T iff:

Dv P PpMq �PpMq | @px, yq P R, υTpx, yq � v

A subset R of X 2 is in analogical proportion on a set of attributes T if the
variation υT takes the same value on R. Here, PpMq denotes the powerset of M.

Proposition 1. The co-variation υS
R
ñ υT holds iff every subset of R which is

in analogical proportion on S is also in analogical proportion on T.



Proof. ñ: Assume that υS
R
ñ υT and that A � R is in analogical proportion on S.

Then, (Def. 3) there exists a v such that @px, yq P R, υSpx, yq � v. Assume that
there exists px, yq, pz, tq P R such that υTpx, yq � υTpz, tq. We have υSpx, yq �
υSpz, tq � v so by Def. 1, υTpx, yq � υTpz, tq. Contradiction.
ð: Let px, yq, pz, tq P R be such that υSpx, yq � υSpz, tq. The set tpx, yq, pz, tqu �
R is in analogical proportion on S and therefore on T. As a result, (Def. 3) there
exists a v such that υTpx, yq � υTpz, tq � v. [\

5 A Rule-Based Inference

In this section, co-variations are used in a rule-based inference to predict the
value of a variation from the values of one or many other variations.

Definition 4. Let f, g P V pX 2,Vq be two variations. The “modus ponens” in-
ference rule on variations is as follows:

fpx, yq � fpz, tq for px, yq, pz, tq P R

f
R
ñ g

gpx, yq � gpz, tq

(MP)

This rule states that knowing that g co-varies with f on a subset R, if we know
that two pairs px, yq and pz, tq take the same value for f , then we can infer that
they also take the same value for g.

This rule can be extended to co-variations F
R
ñ G between two sets of vari-

ations F and G.

Definition 5. Let F � V pX 2,Vq and G � V pX 2,Vq be two sets of variations,
f P F and g P G. The “modus ponens” inference rule on sets of variations is as
follows:

@f P F, fpx, yq � fpz, tq for px, yq, pz, tq P R

F
R
ñ G

@g P G, gpx, yq � gpz, tq

Example #1: the A Fortiori Inference. When the two variations f and g are
indicator functions of partial orders, the modus ponens inference corresponds
to an a fortiori inference [1]. This type of inference exploits the monotony of
two partial orders to estimate the value of an attribute. The authors of [12]
give the following example. If we know that whiskey is stronger than beer, and
that buying beer is illegal under the age of 18, then we can plausibly derive that
buying whiskey is illegal under the age of 18. Let us call A the set of alcohols, and
¨degree and ¨legal age the partial orders on A that order the alcohols respectively
on their degree and minimum legal age. The example can be interpreted as the
co-variation 1¨ degree ñ 1¨ legal age between the two variations 1¨ degree and



1¨ legal age of V pA2, t0, 1uq which represent respectively the indicator functions
of the two relations ¨degree and ¨legal age. The inference rule (MP) gives1:

1¨ degreepbeer, whiskeyq � 1
1¨ degree ñ 1¨ legal age

1¨ legal agepbeer, whiskeyq � 1

and we conclude that the minimum legal age to drink whiskey is at least equal
to the minimum legal age to drink beer.

Example #2: Analogical Proportions. Let us assume that M � ta, b, c, d, eu is a
set of binary attributes. For T � M, the variations υT are the ones defined in Sec. 4.

Assume that we know the rule υta,bu
R
ñ υteu on the set R � tpx, yq, pz, tqu. This

rule says that every pair of R that is in analogical proportion on ta, bu is also in
analogical proportion on teu. If we have, for example, x � ta, b, du, y � ta, eu,
and z � ta, b, cu, and we know that t contains a and not b, then the inference
rule (MP) gives:

υta,bupz, tq � υta,bupx, yq

υta,bu
R
ñ υteu

υteupz, tq � υteupx, yq

So, we can deduce that pz, tq is in analogical proportion on teu. By solving the
analogical proportion equation, we deduce that t contains e.

The “modus ponens” inference is a kind of deductive reasoning, in which a

co-variation f
R
ñ g learned on R can only be applied to a point pz, tq of R. What

happens if pz, tq R R? Can we still apply the rule? Under what conditions?

6 A Similarity-Based Inference

This section defines a hypothetical reasoning scheme, in which co-variations may
be applied to some points that are outside of their known domain R of validity.

The idea of the method is to generalize the inference rule (MP) to any pair
pz, tq P X 2. This leads to the following schema:

fpz, tq � fpx, yq for px, yq P R

f
R
ñ g

gpz, tq � gpx, yq

When pz, tq P R, this schema corresponds to previously defined inference rule (MP).
But here, the inference rule may be applied to pairs pz, tq R R, on the basis of
the similarity between pz, tq and some points px, yq of R, which take the same
value for f .

1 Here the rule 1¨ degree ñ 1¨ legal age says that the two relations vary in the same
direction but does not explicitely give the direction of the co-variation. So a more
rigorous application of the inference rule (MP) would require to compare the pair
pbeer, whiskeyq with one or many other pairs of alcohols.



Example #1: the A Fortiori Inference. In the example of the alcohols, suppose

that the rule 1¨ degree
R
ñ 1¨ legal age is known on the set R � tbeer, whiskeyu2

and that we want to estimate the minimum legal age for cider consumption. If
we know that cider ¨degree beer, the inference rule gives:

1¨ degreepcider, beerq � 1¨ degreepbeer, whiskeyq

1¨ degree
R
ñ 1¨ legal age

1¨ legal agepcider, beerq � 1¨ legal agepbeer, whiskeyq

which makes it possible to formulate the hypothesis that the minimum legal age
for cider consumption is lower or equal than the minimum legal age for beer
consumption.

Example #2: Analogical Proportions. In the example of analogical proportions,

this inference rule allows to apply the co-variation υta,bu
R
ñ υteu to the pair pz, tq

even though it is known only on a subset R � tpx, yqu that does not contain the
pair pz, tq. The inference rule gives:

δta,bupz, tq � δta,bupx, yq

δta,bu
R
ñ δteu

δteupz, tq � δteupx, yq

which makes it possible to formulate the hypothesis that t contains e.

Co-Variations and Adaptation. The modelling of adaptation presented in Sec. 2
can be formulated as a similarity-based reasoning on variations. The set R � X 2

represents a set of pairs of source cases. The element z represents a retrieved
source case psrce, solpsrceqq and the element t represents the target case
ptgt, solptgtqq for which we want to construct the solution part solptgtq. An

adaptation rule ∆pb
R
ñ ∆sol learned on R relates a set ∆pb of variations between

problems to a set ∆sol of variations between solutions. The similarity-based
reasoning that we have presented can be used to construct solptgtq from adap-
tation rules that are known on a set of source cases that do not contain tgt, and
still use them to construct solptgtq.

Such an approach requires to have acquired some co-variations, along with
their domains R of validity. The next section proposes a method to learn co-
variations from data.

7 Learning Co-Variations

This section describes a method to learn co-variations from data. The idea of
the method is to extract co-variations from a partition pattern structure, in the
spirit of what is done in [4].



Pattern Structures. Let G be a set of objects, pD,[q a meet-semilattice2, and δ
a mapping δ : G ÝÑ D that associates to each element of G its “description” in
D. Then, pG, pD,[q, δq is a pattern structure [15]. The elements of D are called
patterns and are ordered by a subsumption relation �: c � d iff c [ d � c. The
derivation operators p.ql defined by:

Al �
¦
gPA

δpgq for A � G and dl � tg P G | d � δpgqu for d P D

form a Galois connection between pPpGq,�q and pD,�). For A,B � G, an
object implication AÑ B holds if Al � Bl.

Partition Structures. A partition structure [4] is a pattern structure pG, pD,[q, δq
in which the set of descriptions D is the set of partitions of a set U , and the
relation [ gives the meet of two partitions. Let E denote the set of equivalence
relations on a set U2, and X, Y denote respectively the intersection and union
operation on U2. It can be shown that pE ,X,Yq forms a lattice, i.e., every pair
of equivalence relations of E has an infimum and a supremum. There is a one-
to-one correspondence between the set E of equivalence relations on U2 and the
set of partitions of U . A partition of U is a set P � PpUq such that

�
piPP

pi � U

and pi X pj � H for all i, j, i � j. For example, if U � t1, 2, 3u, the parti-
tion tt1, 2u, t3uu represents the relation tp1, 2q, p2, 1q, p1, 1q, p2, 2q, p3, 3qu. Let D
be the set of partitions of U . An intersection operator [ and an union oper-
ator \ can be defined that correspond to the X and Y operators on equiva-
lence relations. For example, if U � t1, 2, 3, 4u, tt1, 3u, t2, 4uu [ tt1, 2, 3u, t4uu =
tt1, 3u, t2u, t4uu since tp1, 3q, p2, 4qu X tp1, 2q, p1, 3q, p2, 3qu � tp1, 3qu (reflexivity
is omitted here for the sake of readability). As its relational counterpart, the
set pD,[,\q forms a lattice, and pD,[q is a meet-semilattice ([ is idempotent,
associative, and commutative) so it can be used as a set of descriptions in a
pattern structure.

Variation Structures. A variation structure is a partition pattern structure that
associates to each variation a partition of X 2 in which each class groups the
pairs px, yq that take the same value for this variation.

Definition 6. A variation structure on a subset R � X 2 is a partition structure
pG, pD,[q, δq such that:

– G � V pX 2,Vq;
– D is the set of partitions of R;
– [ gives the meet of two partitions;
– δpυiq is defined by the following �υi

equivalence relation:

px, yq �υi
pz, tq iff υipx, yq � υipz, tq

2 A meet-semilattice is a partially ordered set which has a greatest lower bound for
any non-empty finite subset.



In this structure, the objects are variations υi P V pX 2,Vq that can be seen as
attributes of pairs of elements of X . To each variation υi is associated a partition
δpυiq of R such that two pairs px, yq and pz, tq are in the same class if they take
the same value for the variation υi.

Co-variations on R correspond to object implications in this structure.

Proposition 2. Let pG, pD,[q, δq be a variation structure on R and A,B � G:

A
R
ñ B iff Al � Bl

Proof. ñ: Assume two pairs px, yq, pz, tq P X 2 are in the same equivalence class
of the partition Al. Then, @f P A, fpx, yq � fpz, tq (Def. 6). By definition of
the co-variation A ñ B (Def. 2), we have that @g P B, gpx, yq � gpz, tq, which
means that px, yq �g pz, tq (Def. 6) for all g P B, so the two pairs px, yq, pz, tq are
in the same equivalence class for the partition Bl.
ð : Let two pairs px, yq, pz, tq P X 2 be such that @f P A, fpx, yq � fpz, tq. Then,
px, yq �f pz, tq (Def. 6) for all f P A, and as Al � Bl, two pairs px, yq, pz, tq
that are in the same equivalence class for the partition Al are also in the same
class for the partition Bl. Thus, @g P B, gpx, yq � gpz, tq (Def. 6). [\

This result is interesting because it shows that co-variations can be extracted
from data by adapting existing pattern mining algorithms.

8 Conclusion and Future Work

In this article, co-variations are defined as functional dependencies between vari-
ations, which enables to come up with a natural deduction rule on variations. We
showed that the natural “modus ponens” inference on variations can be easily
extended to perform similarity-based reasoning on variations, and a method was
proposed to learn co-variations from data.

Future work include implementing an algorithm to extract co-variations from
data and testing on various data sets. In particular, we would like to apply such
an algorithm to mine patient trajectories of patients in french hospitals, in order
to explain how health care practices evolve over time or vary between two care
units of a same hospital, or between two hospitals. Besides, an idea that this work
suggests is that adaptation in case-based reasoning can be viewed as a similarity-
based reasoning on variations. It would be interesting to further develop this idea
and to compare a modeling of adaptation based on this principle to existing
approaches.

Aknowledgements. The author wishes to thank the reviewers for their
constructive remarks.
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